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Our main result states that, given an increasing sequence an of positive numbers
such that L;:"~ I 11nan = 00, there exists a function f defined on lO, 11 and not
continuously differentiable on that interval such that En(f) = O(l/n 2an). This
shows that a theorem of Timan cannot be improved.

I. INTRODUCTION

Let qa, b] denote the space of continuous real-valued functions defined
on [a, b], endowed with the uniform norm. Iff E qa, b], En(f) denotes the
distance fromfto the subspace of algebraic polynomials of degree at most n.
Let C I [a, b] be the subspace of qa, b] of continuously differentiable
functions.

A classical theorem of Bernstein [I] states that f is continuously differen­
tiable on the open interval (a, b) if 'L'::= 1 E n(f) < 00. Bernstein has also
proved that this result is optimal in the sense that no matter how slowly the
increasing sequence an tends to infinity, there exists g E qa, b] with g' not
continuous on (a, b) and such that 'L~=IEn(g)=O(an)'

Timan [7], [5, p. 74], and [8, p. 347], have proved the following:

THEOREM 1.1. If w is a modulus of continuity for which

00 I (I)~ -w - < 00
n=1 n n

and if, for fEe [-I, I] and algebraic polynomials Pn of degree at most n,
n = 1,2,3,... ,

If(x) - Pn(x)1 ~ Lln(x) w(Lln(x)l,
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-1~x~l, (1)



where
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(vT=7 1)
.dn(x) = max n 'nr'
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thenfE CI[-I, 1].

If x E (-1, 1), the hypothesis of Theorem 1.1 implies that
L:~=llf(x)-Pn(x)1< 00, in accordance with Bernstein's theorem, whereas if
x is one of the end points of the interval, (1.1) implies that

(j)

~ n If(x) - Pix)l < 00.
n=l

(1.2)

It is the purpose of this article to show that this last condition cannot be
weakened. More precisely, we shall prove

THEOREM 1.2. Let an be an increasing sequence of positive numbers
such that L::'= I I/(na n) = 00. Then there exists a function f in C[O, 1] and
not in C l [0, 1] such that

(1.3)

An example of such an is TI7= 1 logi n, where logi x denotes the ith iterate
of log x.

II. PROOF OF THEOREM 1.2

In order to build the function f of Theorem 1.2, we need several
preparatory results.

LEMMA 2.1. Let g(x) be a positive increasing continuous function
defined for x >0; let a >e. Then for t> 0, one has

00 1 1

J dX<'-t-'
t aXg(x) a get)

The proof is immediate.

LEMMA 2.2. Let f E C[a, b] and let a >0. Suppose that there exists a
sequence ofpolynomials Pn such that

IIPn - fll = O(I/n).
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Then
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IIP~II[a+a,b-al = O(n).

The argument follows lines similar to those of the proof of Theorem 2.1 in
[3], with Markoff's inequality replaced by Bernstein's inequality. For the
sake of completeness we present the proof here: Let k be defined by 2k ~

n < 2k - I. Then

k

Pn = Pn - P2k + ~ (P 2i - P2i-t) + (PI - Po) +Po'
;~ 1

Bernstein's inequality gives

So that

~K (2. 22ik +l)c/2 k + i~~ 22i+1C/2i-J + 2C)

~ Kc (4. 2
k + 4 i~~ 2; + 2 ) ~ Mn.

The following result will play an important role in the proof of
Theorem 1.2.

THEOREM 2.3. Suppose that fE C[-I, I] satisfies the following
properties:

(a) there exists a sequence ofpolynomials Pn such that

IIPn- fll = o(l/n),

(b) f'(O) exists.

Then P~(O) converges to 1'(0).

Proof By replacingf(x) by f(x) + ax + b we may assume thatf(O) = 0
and 1'(0) = 1. Suppose that, for some a> 0, we have

P~(O) ~ 1 + a, i.o. (2.1 )



DIFFERENTIABLE FUNCTIONS 267

(in this proof i.o. means for infinitely many values of n). By Lemma 2.2 and
condition (a), IIP~II[-I/2,1/21 :<.Kn, so that

a
P~(O) - P~(x):<. 4' (2.2)

by the mean value theorem. It follows that, using (2.1) and (2.2),

i.o. (2.3 )

Now, for J small enough,

(2.4)xE [O,J],f(x):<. (1 + ~ ) x,

becausef'(O) = 1,1(0) = O. Suppose that Pn(O) - f(O) = Pn(O):<' a 2/(16Kn).
Then, using (2.3) and (2.4), we find

and for n such that a/(4Kn) < J. This contradicts (a). The argument is
similar if we suppose that

P~(O) < 1 - a, i.o.

Theorem 2.3 is proved.
The crucial step of Theorem 2.2 is the relation (2.2) which could not have

been obtained by directly estimating P~. Indeed the proof of Lemma 2.2
shows that II p~ II[a + a.b -a) :<. K log n and this estimate is sharp. It can also be
shown that, if the hypothesis ff (0) exists and is deleted, the conclusion of
Theorem 2.3 becomes IP~(O)I = o(log n).

Theorem 2.3 remains valid if the point 0 is replaced by any interior point
of [-1, 1]. However, if a is one of the end points of the interval, P~(a)

converges to f'(a) if IIPn - fll = o(1/n 2
). See also Theorems 2.4 and 2.5 in

[31 for related results.
The idea of the above proof finds its origin in Theorem 2.5 in [4].
We now have built the necessary tools for the proof of the main result of

this paper.

Proof of Theorem 1.2. Let

f
v;

f(x) = h(t) dt,
o

O:<.x:<. I,
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where
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and Tn(t) = cos n arccos t is the nth ChebychetT polynomial.
We first show that

Let g(x) = f(x 2
), -I ~ x ~ 1, so that

(2.5)

f
lXI

g(x) = h(t) dt,
o

-1~x~1.

If x> 0, g'(x) = h(x) and g'(x) = -h(-x) if x <O. Because Tn(t) is odd if n
is odd [6, p. 5], h(x) is odd, so that g'(x) = h(x) for 0 < Ixl < 1. Because
Tn(O)=O if n is odd, h(O)=O=g'(O). Hence g'(x)=h(x) for -I ~x~ 1.
Let

(2.6)

for n = 5s, 5s+ 1,..., 5S + 1 - 1. We have

(2.7)

(In fact, we have En(h) = IIPn- hll by [8, p. 77].) Let k(x), x ~ I, be the
piecewise linear continuous function whose knots are n, n ~ 1, and such that
k(n) = asn ' n ~ l. We obtain, using the relation between sand n, and
Lemma 2.1,

(2.8)

Using [5, p. 79], we obtain

Now let R 2n be the polynomial (of degree at most 2n) of best approximation
to g on [-I, I]. But g is an even function. It follows that R 2n is even [5,
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p. 34 j, so that R 2n(x) = Qn(x
2) for some polynomial Qn' Because

g(x) = f(x 2
), we obtain

IIR 2n (x) - g(x)llr-I,11 = II Qn(x2) - f(x 2)III_l,11

= II Qn(x2) - f(x 2)ll ro, I]

= II Qn(x) - f(x)llro,II' (2.10)

From (2.9) and (2.10) it follows that

(1.3) is established. It remains, in order to complete the proof of
Theorem 1.2, to show that f ft: C 1[0,1]. We remark first that f'(x) exists
and is continuous for 1 < x:::;; 1. Suppose that limx~o+f'(x) exists. Because
h(O) = 0, we would have

2 I· f'() I' h(y'X)1m x = 1m --'-'=-'-
x-o+ x-o+ y'X

lim hex) = h~(O).
x~o+ x

But h is odd as already noticed, so that h'-(O) would exist and be equal to
h~(O). We show now that this is impossible by proving that h'(O) does not
exist. Indeed, on the one hand, there exists, by (2.8), a sequence P n of
polynomials such that

(2.11 )

(We suppose, without loss of generality, that limn~oo an = 00.) On the
other hand, we obtain, using the definition of Pn given in (2.6) and the fact
that T~k(O)= Sk (because Sk == 1 mod 4),

n 1
P~n(O) = ~ -sr T;,(O)

r= I as'

So that

lim P~n(O) = 00
n~oo

(2.12)
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by the Cauchy condensation theorem and the hypothesis on an' (2.11),
(2.12) and Theorem 2.2 show that h'(O) does not exist. That shows that
fE CI[O, 1].

The proof of Theorem 1.2 is complete.
It would be of interest to see whether or not the above function f belongs

to the Lip 1 class of [0, 1]. Our attempts to answer this question have been
unsuccessful.

It follows from a result of Zygmund [9, p. 48] that the function h
considered in the proof of Theorem 1.2 is differentiable in a set of the power
of the continuum in every interval. The proof that hex) is not differentiable at°relies on Theorem 2.3, which is based on Lemma 2.2, which, in turn, is
proved by using Bernstein's inequality. It does not seem that the techniques
used by Hardy in [2] to prove that L~=o 1/an cos anx, a> I, is nowhere
differentiable may be applied to show that h'(O) does not exist.

We end this section by noting that Jackson's theorem [5, pp. 66, 67]
yields only that E n(g)=o(l/n) if gE CI[O, 1], whereas Theorem 1.2 shows
the existence of a non-C 1 function f for which En(f) = O( 1/n Zan).

III. REMARKS AND AN OPEN PROBLEM

In order for the function f defined on [-1, 1] to be continuously differen­
tiable, the theorem of Timan (Theorem 1.2) requires that IPn(x) - f(x)1 ~
1/n z w(1/n Z

) with L~= I lin w(l/n) < 00 if x = ± 1.
The following theorem shows that a sufficient condition for f to be in

CI[a,b] is L~=I nEn(f) < 00. This result slightly improves Timan's theorem
if x is one of the end points in the interval in the sense that E n(f) is not
required to decrease like lin w(l/n Z

). (Of course Theorem 3.2 is much
weaker than Timan's theorem in the interior of the interval.)

Although we believe that the following extension of the Cauchy conden­
sation test is known, we are not aware of any reference to it.

LEMMA 3.1. Let an be a decreasing sequence ofpositive numbers. If

00

~ nan < 00
n=1

then

00

2.: 2znazn < 00.
n=1
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Proof The lemma follows from
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r 2'

I 4ka2k ~ 4 I ka k ,
k=1 k=1

r = 1,2,..., (3.1)

which we will proceed to establish. (3.1) is true for r = 1 and suppose that it
holds for r = n. Then the proof of (3.1) reduces to showing that

2n + I

4na2n+, ~ '\' ka k •

k=2n+ 1

Now the hypothesis on ak yields

k

= a2n +1+ «2n+1+ 1) 2n+1- (~n + 2)(2 n + 1»

=4
n
a2n+, (2 + ;n -+- 2n3+1 - 2~n)

The lemma is proved.
If nan were decreasing, the conclusion of Lemma 3.1 would follow

immediately from the Cauchy condensation test. In the following theorem,
the above lemma will be used with an = En(f). Because En(f) may remain
constant for an arbitrarily large number of (consecutive) values of n [8,
p. 40 I, nEn(f) need not be decreasing.

THEOREM 3.2. Let f E C[a,b]. If

00

'\ ' nEn(f) < 00
n=l

then

The proof is an application of the classical telescopic technique of
Bernstein, MarkofTs inequality and the above lemma: Let Pn be the
polynomial of best approximation to f on la, bland let
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so that
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00

f(x)= 2..: Sn(x)
n=O

uniformly on [a, b]. Now Markoff's inequality gives

IIS~II ~ M2
2n IISnl1

~ M2 2n (II P2n- fll + IIP2n-1 - fll)
~ M2 2n + 'E2n-1(f).

But the hypothesis on E n(f) and Lemma 3.1 yield

00

2..: 22n + 'E2n-1(f) < 00.
n=O

It follows that L~=o S~(x) converges uniformly on [a, b] (necessarily to
f'(x)).

We can now combine Theorems 1.2 and 3.2 in

THEOREM 3.3. An optimal sufficient condition for f E qa, b] to be
continuously differentiable is L~=, nEn(f) < 00.

The next result is proved by following lines similar to the proof of
Theorem 3.2.

THEOREM 3.4. Let f E qa, b]. If
00

2..: n 2k -'En(f) < 00
n=!

then

where k is a positive integer.

We believe that, as in Theorem 3.2, Theorem 3.4 is optimal in the
following sense.

Conjecture 3.5. Let an be an increasing sequence of positive integers
such that L~=! l/nan~ 00. Then there exists a functionfin qQ, 1] but not
in Ck [0, 1] such that

(k ~ 2).
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Our attempts to build such a function have been unsuccessful. We were
only able to prove the following result, which first require some notations:
We say that a function g defined on [a, b] satisfies a Lipschitz condition of
order a if Ig(x) - g(y)1 ~ M Ix - yla, x, y E [a, b]; and we write g E Lip a.

THEOREM 3.6. For every positive integer k and for every a < a < 1,
there exists a function f E qa, I] such that,for n = 1,2,3,...,

and such that

COROLLARY 3.7. For every positive integer r and for every a < fJ < 1,
there exists a function f E qa, 1],f E C'[a, 1) and

Proof of the Corollary. Apply Theorem 3.6 with r = k - 1 and fJ =
1- a12.

The gap between Corollary 3.7 and Conjecture 3.5 is clear.

Proof of Theorem 3.6. Letf(x) = xk+a, a ~ x ~ 1. Consider the function
g(x) = X2k Ixl 2a , -1 ~ x ~ 1. It is easy to see that g(2k) exists and belongs to
the class Lip 2a if a ~ ! and that g(2k+ I) exists and belongs to Lip 2a - 1 if
a>! (and < 1). It follows from Jackson's theorem that En(g)~Kln2k+2a,
a < a < 1. (In fact I/n 2k+2a is the exact order of decrease of En(g). See [8,
p. 412).) Let, as in the proof of Theorem 1.2, P 2n be the polynomial of best
approximation of degree at most 2n to g on [-1,1). Because P2n is even, g
being even, it is of the form P2n(x) = Qn(x2). Now, for a fixed k,

n2~2a ~ II Qn(x
2
) - X

2k
Ixl

2a
11[-1,11

= II Qn(x2) - X
2kx 2a

11[0,1]

= II Qn(X) - XkX a
11[0,11'

640/35/H
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And, on the other hand,
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K I (f(k) 2-) K 2-,,-::;;;W , ::;;; ",
n n n

where f(x) = X
k +". The theorem is proved.

It is worth noticing that the theorem of Jackson (or of Timan [5, p. 66 D,
applied directly to f, yields only that En(f)::;;; K 3/n k +".
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